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1. Introduction

Since the pioneering papers by Khvolson [1] and Schuster [2], the radiative transfer
theory (RTT) has been a basic working tool in astrophysics, atmospheric physics, and
remote sensing [3—11], while the radiative transfer equation (RTE) has become a
classical equation of mathematical physics [12—15]. However, the RTT has been often
criticized for its phenomenological character, lack of solid physical background, and
unknown range of applicability [e.g., 16]. The past three decades have demonstrated
substantial progress in studies of the statistical wave content of the RTT (e.g., [17-24]
and references therein). This research has resulted in a much better understanding of the
physical foundation of the RTT and has ultimately made the RTE a corollary of the
statistical electromagnetics [25].

The aim of this chapter is to demonstrate how the RTE follows from the Maxwell
equations when the latter are applied to the problem of multiple electromagnetic
scattering in discrete random media and to discuss how this equation can be solved in
practice. The following section contains a brief summary of those principles of classical
electromagnetics that form the basis of the theory of single light scattering by a small
particle. Section 3 outlines the derivation of the general RTE starting from the vector
form of the Foldy-Lax equations for a fixed N-particle system and their far-field version.
Based on the assumption that particle positions are completely random, the RTE is
derived by applying the Twersky approximation to the coherent electric field and the
Twersky and ladder approximations to the coherency dyad of the diffuse field in the
limit N — o . We then discuss in detail the assumptions leading to the RTE and the
physical meaning of the quantities entering this equation. The final section describes a
general technique for solving the RTE that allows efficient software implementation and
leads to physically based practical applications.

2. Single scattering

Many quantities used in the derivation of the RTE and finally entering it originate in the
electromagnetic theory of scattering by a single particle. Therefore, we will introduce in this
section the necessary single-scattering concepts and definitions and briefly recapitulate the
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results that will be necessary for understanding the material presented in the following
sections. A comprehensive treatment of the subject of single scattering, including explicit
derivations of all formulas, can be found in [26].

2.1. COHERENCY MATRIX, COHERENCY VECTOR, AND
STOKES VECTOR

In order to introduce the basic radiometric and polarimetric characteristics of a transverse
electromagnetic wave, we use a local Cartesian coordinate system with origin at the
observation point (Fig. 1) and specify the direction of propagation of the wave by a unit
vector n={8,@}, where [0, r1] is the zenith angle and ¢ (1[0, 277) is the azimuth angle

measured from the positive x-axis in the clockwise direction when looking in the direction
of the positive z-axis. Because the wave is assumed to be transverse, the electric field at the

observation point can be expressed as E=Ey +E4 = Eeé +E,¢ , where E, and E4 are
the @-and ¢ -components of the electric field vector.

Consider a time-harmonic plane electromagnetic wave propagating in a homogeneous,
linear, isotropic, and nonabsorbing medium with a real electric permittivity £ and a real
magnetic susceptibility / :

E(r) = E exp(ifn [1), E,0h=0, (1)

where the time factor exp(—iat) is omitted, & = w,/EU is the wave number, and @ is the
angular frequency. The 2% 2 coherency matrix p is defined by

p=[ﬂn pu}:l L @
P P 2\ | EopEGy  EopEy ’

X

Fig. 1. Local coordinate system used to describe the direction of propagation and
the polarization state of a transverse electromagnetic wave.
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where the asterisk denotes a complex-conjugate value. The elements of p have the

dimension of monochromatic energy flux (Wm™) and can be also grouped into a 4x1
coherency column vector:

P11 EOHEODB

1 (& | EowL§,
J=|P =2 = 7, 3
P21 2\ | Eos EGo ®)

P2 Eoy Egy

The Stokes parameters I, O, U, and V are then defined as the elements of a 4x1 column
Stokes vector I:

EwEf, +EO¢EOD¢ I
I=DJ=— |= =¥, 4
2\/; —EooEsy —EopEgp U )
i(Eo¢EoDe _EeroD¢) 4
where
1 0 0 1
1t 0 o -1
D= 0O -1 -1 0} (5)
0 -1 1 0

2.2. VOLUME INTEGRAL EQUATION AND LIPPMANN-SCHWINGER
EQUATION

Consider a scattering object that occupies a finite interior region Viyr and is surrounded by

the infinite exterior region Vxr. The interior region is filled with an isotropic, linear, and

possibly inhomogeneous material.
The monochromatic Maxwell curl equations describing the scattering of a time-
harmonic electromagnetic field are as follows:

OXE(r) =iwyH(r)
OxH(r) = -1iwgE(r)

OxE(r) =iaw (r)H(r)
OxH(r) = —iwé& (r)E(r)

} fOI' r VEXT . (6)
} for r VN, (7)

where subscripts 1 and 2 refer to the exterior and interior regions, respectively. Since the
first relations in Eqgs. (6) and (7) yield the magnetic field provided that the electric field is
known everywhere, we will look for the solution of these equations in terms of only the
electric field. Assuming that the host medium and the scattering object are nonmagnetic,
1e., [h(r)= W =M, where [, is the permeability of a vacuum, and following the

approach described in [26], one can reduce Egs. (6) and (7) to the following volume integral
equation:
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E(r) =E™(r) +k} I dr' G(r,r") E(r) [m*(r') - 1], rOR?, (8)

where é(r,r') is the free space dyadic Green’s function, m(r) =k, (r)/k; is the refractive
index of the interior relative to that of the exterior, and k =w4& Uy, and
k> (1) :a)m are the wave numbers in the exterior and interior regions,
respectively. Alternatively, the scattered field E**(r) = E(r) —E™(r) can be expressed in

terms of the incident field by means of the dyad transition operator T:

Exr)= | &' Gr,r)0| " T r")E™E"), rOR>. 9)

Vint Vint
Substituting Eq. (9) in Eq. (8) yields the Lippmann-Schwinger equation for T:
T(r,r') =k [m2(r)=1]8(r -r')]
+ k2 [m*(r)—1] L &r" G,y (T(x",r'), v, OV, (10)
INT

where I is the identity dyad.

2.3. FAR-FIELD SCATTERING

We now choose a point O at the geometrical center of the scatterer as the common origin of
all position vectors (Fig. 2) and make the standard far-field-zone assumptions that k7 > 1
and that  is much larger than any linear dimension of the scatterer. Then Eq. (8) becomes

Esca (r) =

—

. 2 -
SOOI G-k 0y ] @ () -1 E@ ek E), (D)
r T

VINT

where [ denotes a dyadic product of two vectors and r=r/r is a unit vector in the

direction of r. The factor / ~FOF=000+¢ 0§ ensures that the scattered spherical
wave in the far-field zone is transverse so that

Es(r) =

—

i A A A

SO oy, R ERGE) =0, (12)
r

where the scattering amplitude E(r) is independent of » and describes the angular

distribution of the scattered radiation.
Assuming that the incident field is a plane electromagnetic wave E™(r)=

Eic exp(ikin™ O0F) yields
Ei‘.ca (ﬁsca) = E(ﬁsca’ﬁinc) [Ez)nc , (13)

where n*® = (Fig. 2). The elements of the so-called scattering dyad A(A**,a™) have the
dimension of length.
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Fig. 2. Scattering in the far-field zone.

It follows from Eq. (12) that A%* CH(A**,A™) = 0. Since Ei* [i* =0, the dot product
A=, ™) ™ is not defined by Eq. (13). To complete the definition, we take this

product to be zero. As a consequence, only four out of nine components of the scattering
dyad are independent. It is therefore convenient to introduce a 2x%2 amplitude matrix S,
which describes the transformation of the - and ¢ -components of the incident plane

wave into the & - and @ -components of the scattered spherical wave (Fig. 2):

Esca (},ﬁsca) = eXp(lkll") S(ﬁsca , ﬁinc) Ei)nc , (14)
F 00 7

where E denotes a two-component column formed by the 8- and ¢ -components of the

electric vector. The elements of the amplitude matrix are expressed in terms of the
scattering dyad as follows:

S12 — 6sca DZ |_’_¢inc’

Sll :ésca D?i (15)
| S22 — (’I‘)sca 4 E(]‘)inc'

[é'nc ,
S21 = (’[‘)sca minc’
2.4. PHASE AND EXTINCTION MATRICES

The relationship between the coherency vectors of the incident and scattered light for
scattering directions away from the incidence direction (r #n™) in the far-field zone is



372

described by the 4x4 coherency phase matrix Z”7 :
- 1 o n .
Jsca(rnsca) :_ZZJ(nsca,nmc)Jmc , (16)
r
where the coherency vectors of the incident plane wave and the scattered spherical wave are
given by

EjsEfs” Eig () Ejgt ()]

[
) EincEincD ) Esca ﬁsca Esca ﬁsca O
Jmc :l i (1)1161: ?ch ’ Jsca(rnsca)zll i 1sza("sca)[ 1sﬁa("sca)]D ’ (17)
2\ uo | Eos Ece P2 2\ pp | B (0)[Eg (n°)]
[

E(l)r;:Eér;:D 1s;a (ﬁsca ) Els,;’a (ﬁsca )]D

and the elements of Z/(n**,n™) are quadratic combinations of the elements of the

amplitude matrix S(n*?,n"°) :

ISul” SuSh Sush o |Se|
20 2| SuSh SuSh  SuSi SuSh| a8)
S21SIZI S21S1*2 S22S1*1 SZZSIZZ
1Su|” SuS5  SnSs [Sx|
The corresponding Stokes transformation law is
Isca (,,.ﬁsca) — %Z(ﬁsca,ﬁinc) Iinc , (19)
r

where 1™ =DJ™ and I** =DJ* . The explicit expressions for the elements of the Stokes
phase matrix Z follow from Eq. (18) and the obvious formula

Z(ﬁsca’ﬁinc) =DZ’ (ﬁsca’ﬁinc)D—l . (20)
The coherency vector of the total field for directions r very close to n™™ is defined as

Ey(rt)[Ey(rr)]”

soiy= L [E| EaGPLE (B
2\ U | Eg(rB)Eg(rE)]” |

Ey(rt)[E, (rT)]"

21)

where E(rr) =E™(rr) +E**(rr) is the total electric field. Integrating J(rr) over the

surface AS of a collimated detector facing the incident wave, one can obtain for the total
polarized signal:

J(rﬁinc)AS :JincAS_KJ(ﬁinc)Jinc +O(7"_2), (22)

where the elements of the 4x4 coherency extinction matrix K/ (n™) are expressed in

terms of the elements of the forward-scattering amplitude matrix S(n™,n"™*) as follows:
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S1D1 =Si Slmz =S 0
K’ :12_77 SZDI S2Dz =Sy 0 =S (23)
k] _S21 0 S]D] _S22 S]DQ
In the Stokes-vector representation,
I )AS =1 AS —K(n'") I +O(r2), (24)

where I(rn'™)=DJ(rn'™) . Expressions for the elements of the 4x4 Stokes extinction
matrix K(n™) follow from Eq. (23) and the formula

K(i™)=DK’(h")D". (25)

Equations (22) and (24) represent the most general form of the optical theorem and
show that the presence of the scattering particle changes not only the total power of the
electromagnetic radiation received by the detector facing the incident wave, but also,
perhaps, its state of polarization. The latter phenomenon is called dichroism and results
from different attenuation rates for different polarization components of the incident
wave.

2.5. OPTICAL CROSS SECTIONS

Important optical characteristics of the scattering object are the total scattering,
absorption, and extinction cross sections. The scattering cross section C, is defined
such that the product of C,., and the incident monochromatic energy flux gives the total
monochromatic power removed from the incident wave owing to scattering of the
incident radiation in all directions. Similarly, the product of the absorption cross section
Cas and the incident monochromatic energy flux is equal to the total monochromatic
power removed from the incident wave as a result of absorption of light by the object.
Finally, the extinction cross section C., is the sum of the scattering and absorption
cross sections and characterizes the total monochromatic power removed from the
incident light due to the combined effect of scattering and absorption.
Explicit formulas for the extinction and scattering cross sections are as follows:

1 N . N _
Cext = P_nc[Kl | (nmc) Jinc 4 Klz(nmc )ch

+ K13(ﬁinc )Uinc + K14 (ﬁinc)Vinc] , (26)

1
Csca = .
] mnc

J dr[Z, (r,n" )" + Z,(r,n")Q"
4
+ le (f.’ ﬁinc )Uinc + Zl4 (f.’ ﬁinc)Vinc] . (27)

We then have Cg, = C. —Cyo 2 0. The single-scattering albedo is defined as the ratio of
the scattering and extinction cross sections,
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@ = Coa[Coxt <1, (28)

and is equal to unity for nonabsorbing particles.

2.6 SINGLE SCATTERING BY A SMALL COLLECTION OF
RANDOMLY POSITIONED PARTICLES

The formalism described above can also be applied to single scattering by tenuous particle
collections under certain simplifying assumptions. Consider a volume element having a
linear dimension / and comprising a number N of randomly positioned particles. We assume
that N is sufficiently small and that the mean distance between the particles is large enough
that the contribution of light scattered by the particles to the total field exciting each particle
is much weaker than the external incident field and can be neglected. We also assume that
the positions of the particles are sufficiently random that there are no systematic phase
relations between individual waves scattered by different particles. Consider now far-field
scattering by the entire volume element by assuming that the observation point is located at
a distance much greater than both / and the wavelength of the incident light. It can then be
shown [26] that the cumulative optical characteristics of the entire volume element are
obtained by incoherently adding the respective optical characteristics of the individual
particles:

Cext = Z(Cex[)i = N<Cext> D) (29)
Csca = z (Csca )i = N<Csca> s (30)
Cabs = D (Cuns)i = N{Capy ), (1)
K=>K; =N(K), (32)
Z2=>2,=N(2), (33)

where the index i numbers the particles and <Cext> , <Cm> , <Cabs> , <K> , and <Z> are the

average extinction, scattering, and absorption cross sections and the extinction and phase
matrices per particle, respectively.

2.7 MACROSCOPICALLY ISOTROPIC AND MIRROR-SYMMETRIC
SCATTERING MEDIA

By definition, the phase matrix relates the Stokes parameters of the incident and the
scattered beam defined relative to their respective meridional planes. In contrast, the
scattering matrix F relates the Stokes parameters of the incident and the scattered beam
defined with respect to the scattering plane, i.e., the plane through the n"™® and n**. A
simple way to introduce the scattering matrix is to direct the z-axis of the laboratory
reference frame along the incident beam and superpose the meridional plane with ¢ =0

and the scattering plane:

F(esca) — Z(gsca, ¢sca — 0, einc = O, ¢inc = O) . (34)
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Ainc

Fig. 3. Relationship between the scattering and phase matrices.

The concept of scattering matrix is especially useful in application to so-called
macroscopically isotropic and mirror-symmetric scattering media composed of
randomly oriented particles with a plane of symmetry and/or equal numbers of randomly
oriented particles and their mirror-symmetric counterparts. Indeed, in this case the
scattering matrix of a particle collection is independent of incidence direction and
orientation of the scattering plane, is functionally dependent only on the scattering angle

© =arccos(n™ [0**), and has a simple structure:

F.(O) F»(0) 0 0
_| F2(0) F»(©) 0 0 |_
FOE ™07 0 Rue) Ruey|TNFO): 3
0 0 -y (@) Fi (@)

where (F(OQ)) is the ensemble-averaged scattering matrix per particle.

Knowledge of the scattering matrix can be used to calculate the Stokes phase matrix for
an isotropic and mirror-symmetric scattering medium (Fig. 3). Specifically, to compute the
Stokes vector of the scattered beam with respect to its meridional plane, one must:

* calculate the Stokes vector of the incident beam with respect to the scattering plane;

*  multiply it by the scattering matrix, thereby obtaining the Stokes vector of the scattered
beam with respect to the scattering plane; and finally

* compute the Stokes vector of the scattered beam with respect to its meridional plane.

This procedure yields:
Z(@sca’ ¢sca; Hinc , ¢inc) - L(_Jz) F(@) L(n-_ 0—]) , (36)
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where

1 0 0 0

|0 cos2n -sin2n O

L(7) = 0 sin2p7 cos2n 0
0 0 0 1

G37)

is the Stokes rotation matrix that describes the transformation of the Stokes vector as the
reference plane is rotated by an angle 77 in the clockwise direction when one is looking

in the direction of light propagation.
The extinction matrix for an isotropic and mirror-symmetric scattering medium is
direction independent and diagonal:

K) =K =N{Cex)A , (38)

where A is the 4x4 unit matrix. The average extinction, scattering, and absorption
cross sections per particle and the average single-scattering albedo are also independent
of the propagation direction of the incident light as well as of its polarization state.

It is convenient in the RTT to use the so-called normalized scattering matrix

@@ h©) 0 0

4 _16(©O) a(O) 0 0
@ To we) hoe)
0 0 5O wl©)

FO)= (39)

with dimensionless elements. The (1, 1)-element of this matrix, traditionally called the
phase function, is normalized to unity according to

1 J'O dOsin@aq,(©) = 1. (40)

Similarly, the normalized phase matrix can be defined as

4n

(Con)

2(z9sca , ¢sca; 7_9inc’ ¢inc) = <Z(z9sca’ ¢sca; 7_9inc’ ¢inc )> . (41)

3. Multiple Scattering
3.1. FOLDY-LAX EQUATIONS

We will now study multiple scattering by large particle collections and eventually derive
the RTE. We begin by considering electromagnetic scattering by a fixed group of N

particles collectively occupying the interior region Vir ZULV,» , where V; is the

volume occupied by the ith particle. Equation (8) now reads
E(r)=E™(r)+ j . &er'u’)Gr,r)[E(x'), rOR?, (42)
R

where the total potential function U(r) is given by
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Ur)=> U (r), rOR, 43)

and U, (r) is the ith-particle potential function. The latter is defined by

_J0, r4vr,
UO={ ey, 0 49

where m;(r) =k, (r)/k, is the relative refractive index of particle i. All position vectors

originate at the origin O of an arbitrarily chosen laboratory coordinate system. It can
then be shown [25] that the total electric field everywhere in space can be expressed as

N
E(r) =E™(r)+ Y I &or' é(r,r')tj' &r" T, r") E,(r"), rOR?, (45)
i1 Vi
where the field E; exciting particle i is given by

E ) =E™()+ Y EF(@), (46)

J(#i)=1

and the Ef¢ are partial exciting fields given by
Ege(r) = I dr’ é(r,r')[J' e T, ) E, ("), rOV, (47)
Vi Vi

The 7, satisfies the Lippmann-Schwinger equation
Ter) =008 -r) 1 +U,m) [ ¢ Ger D), erOl, @)
Vi

and is the dyad transition operator of particle 7 in the absence of all other particles.

The Foldy-Lax equations (45)—(47) directly follow from Maxwell’s equations and
describe the process of multiple scattering by a fixed group of N particles. Specifically,
Eq. (45) decomposes the total field into the vector sum of the incident field and the
partial fields generated by each particle in response to the corresponding exciting fields,
whereas Eqs. (46) and (47) show that the field exciting each particle consists of the
incident field and the fields generated by all other particles.

3.2. FAR-FIELD ZONE APPROXIMATION

Assume now that the distance between any two particles in the group is much greater
than the wavelength and much greater than the particle sizes, which means that each
particle is located in the far-field zones of all other particles. This assumption allows us
to considerably simplify the Foldy-Lax equations. Indeed, the contribution of the jth
particle to the field exciting the ith particle in Eq. (46) can now be represented as a
simple outgoing spherical wave centered at the origin of particle J:
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Eg°(r) = G(r,) Ey;(F)) = exp(-ik R, [R,) E; exp(ik R, ), rOV (49)
where
G(r) = M , (50)
r
E; =G(R)) Eiy(Ry), E; R, =0, (51)

i~

r;, R;, R;,and R; are shown in Fig. 4(a). Obviously, E; is the partial exciting field

at the origin of the ith particle caused by the jth particle. Thus, Egs. (46) and (49) show
that each particle is excited by the external field and the superposition of locally plane

waves from all other particles with amplitudes exp(—iklli,-j [(R,)E; and propagation

OBSERVATION
POINT

Fig. 4. Scattering by widely separated particles. The local origins O; and O; are
chosen arbitrarily inside particles i and j, respectively.
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directions li” :
N ~ ~
E(r)=Efexp(ik$F) + > exp(-ikR, [R)E, exp(ik R, ). rDV,,  (52)
J(#h)=1
where we have assumed that the external incident field is a plane electromagnetic wave
Ei™(r) = Ei exp(ik,s [F) .

According to Egs. (12) and (13), the outgoing spherical wave generated by the jth
particle in response to a plane-wave excitation of the form Eexp(ikn[¥;) is given by
G(r;) 4;(F;,0) [E, where r; originates at O, and A;(f;,R) is the jth particle scattering
dyad centered at O;. To make use of this fact, we must rewrite Eq. (52) for particle j
with respect to the jth-particle coordinate system centered at O, , Fig. 4(a). Taking into
account that r =r; +R; yields

N
E;(r)=E™(R;)exp(iks ;) + z E; exp(iR ; 1)), rv;. (53)
1 ))=1

The electric field at O; generated in response to this excitation is simply
- ~ N - ~ ~
G(R,-j)[A_,-(R,-j,§) [(E™(R;)+ ZAj R;,R ) EE_,-,J . (54)
I(#))=1

Equating this expression with the right-hand side of Eq. (49) evaluated for r = R;
finally yields a system of linear algebraic equations for the partial exciting fields E; :

N

1% )=

After the system (55) is solved, one can find the electric field exciting each particle
and the total field. Indeed, Eq. (53) gives for a point r" OV :

N
E,(r") = E™(R,)exp(ikd )+ > E; exp(ikR; 1), r'0V, (56)

J(#i)=1

[see Fig. 4(b)], which is a vector superposition of locally plane waves. Substituting
r/=0 in Eq. (56) yields

N
E(R)=E™[R)+ > E,;. (57)
J(#)=1
Finally, substituting Eq. (56) in Eq. (45), we derive for the total electric field:
N - N N _ .
E(r)=E™(r)+Y G(n) 4 (F,)E™R,) +> G(rn) Y 4FE.R)E,, (58)
i=1

i=1 J(#i)=1
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where the observation point r, Fig. 4(b), is assumed to be in the far-field zone of any
particle forming the group.

3.3. TWERSKY APPROXIMATION

We will now rewrite Egs. (58) and (55) in a compact form:

E= Emc+ZB,,ODzmc+Z Z i (B, (59)

=1 j(#i)=l1

E; = By, (B + Z By E,, (60)

where E=E(r), E™ =E"*(r), E" =E"(R,),

By =G(n) 4(F.9), By =G(n) 4(F.Ry), 61
Bjo =G(Ry) A4, (Rijag): B =G(R;) 4;(R;,R ;).
Iterating Eq. (60) yields
~ N N . N N _ _ _
E; = Byo B+ By (Byo I+ > By (B, BB TGS+ (62)
= =1 m=1

#

~ —

1£j m#l

(SN

whereas substituting Eq. (62) in Eq. (59) gives an order-of-scattering expansion of the
total electric field:

N N N
E= Einc +Z§ri0 EE;nc +Z ZE |3§l/0 EEmc
i=1
JEi

=l j=1

N N N
S S
- EE
N N N N
+Z Z Z Zérij |jijl |3§/'lm DglmO mlrzc +eee (63)

i=1 :1
J*i

I3
B0

%)

The terms with j =i and / = j in the triple summation on the right-hand side of

Eq. (63) are excluded, but the terms with / =i are not. Therefore, we can decompose
this summation as follows:

N N N N N
2 2 2By By By (B +3 ) D By By By (EF* (64)
i=1 j=1 =l izl j=l

J# J#i

Higher-order summations in Eq. (63) can be decomposed similarly. Hence, the total field
at an observation point r consists of the incident field and single- and multiple-scattering
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E(r)= <« +Z — o + Zz — o«

YD —e—e—e«

E(N)=+« +) —04¢ +>> —o—0«

+ZZZ —o o 0«

Fig. 5. Diagrammatic representations of (a) Eq. (63) and (b) Eq. (65).

contributions that can be divided into two groups. The first one includes all the terms
that correspond to self-avoiding scattering paths, whereas the second group includes all
the terms corresponding to the paths that go through a scatterer more than once. The so-
called Twersky approximation [27] neglects the terms belonging to the second group
and retains only the terms from the first group:

N N N N N
inc mnc inc inc
BB 3 5 B+ X35, G B +3 5"y Gy i B
i=1 i=1 j=l1 i=1 j=1 5;1
Ed) kS i
7 7 1#£j
N N N N
+ 33> B,y By By, B B +---. (65)
i=1 j=1 [=]1 m=1
j#i 1Ei m#i
1] m#j
m#l

It is straightforward to show that the Twersky approximation includes the majority of
multiple-scattering paths and thus can be expected to yield rather accurate results
provided that the number of particles is sufficiently large.

Panel (a) of Fig. 5 visualizes the full expansion (63), whereas panel (b) illustrates the
Trwersky approximation (65). The symbol «— represents the incident field, the symbol
—e denotes multiplying a field by a B dyad, and the dashed connector indicates that

two scattering events involve the same particle.

3.4. COHERENT FIELD

Let us now consider electromagnetic scattering by a large group of N arbitrarily oriented
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particles randomly distributed throughout a volume V. The particle ensemble is
characterized by a probability density function p(R;,&;...;R;,&;...; Ry,&y) such that

the probability of finding the first particle in the volume element d*R; centered at R,
and with its state in the region d¢&; centered at &, ..., the ith particle in the volume

element d°R; centered at R; and with its state in the region d¢&; centered at &, ..., and

the Nth particle in the volume element d°R, centered at Ry and with its state in the

region d¢y centered at &y is given by p(R;,&;...; Ry, &y )H:d3R,- dé; . The state of

a particle can collectively indicate its size, refractive index, shape, orientation, etc. The
statistical average of a random function f'depending on all N particles is given by

)= [FRLE: i Ry E) PR E s Ry E) [ ERAE (66)

If the position and state of each particle are independent of those of all other particles
then

p(RIaEI;---;RNaQ(N):npi(RiaEi)- (67)

This is a good approximation when particles are sparsely distributed so that the finite
size of the particles can be neglected. In this case the effect of size appears only in the
particle scattering characteristics. If, furthermore, the state of each particle is
independent of its position then

Pi(R,&) = pri(R}) pa($) - (68)
Finally, assuming that all particles have the same statistical characteristics, we have

Pi(R;,&) = p(R;,&) = pr(R)) pe($) - (69)
Obviously,

pr(R)=no(R)/N . (70)

If the spatial distribution of the N particles throughout the volume V is statistically
uniform then

ny(R)=n, =N/V , pr(R)=1/V . (71)

The electric field E(r) at a point r in the scattering medium is a random function of

r and of the coordinates and states of the particles and can be decomposed into the
average (coherent) field E.(r) and the fluctuating field E;(r):

E(r) =E.(r)+E;(r), E.(r)=(Er)), (Ec(r))=0. (72)

Assuming that the particles are sparsely distributed and have the same statistical
characteristics, we have from Eqgs. (65), (67), and (69):
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E. =E™ + ﬁ J‘<2(f'n§)> EG(r)pr(R;) d°R;
+ZN:ZN: j<21(fi,1i,,.)> Eq;l(liij,é)>EEif°G(n)G(Ri,)

=1 J
J

Hon

% pr(R;) pr (R./') d3R,-d3R_,- e, (73)

where (2(ﬁ1,ﬁ)) is the average of the scattering dyad over the particle states. Finally,
recalling Eq. (70), we obtain in the limit N — oo :
E. = E"+ I<Z1(f~,.,§)>m,i.mG(r,.)n0(R,.)dSR,.

—

+ (G R)) AR, ) EFGOIGR,) no(R )y (R,) ER, 'R, +---, (74)

where we have replaced all factors (N —n)!/N! by N". This is the general vector form

of the expansion derived by Twersky [27] for scalar waves.
Assume now that the particles are distributed uniformly throughout the volume so that
ny(R) =n, and that the scattering medium has a concave boundary. The latter assumption

ensures that all points of a straight line connecting any two points of the medium lie inside
the medium. It is convenient to introduce an s-axis parallel to the incidence direction and
going through the observation point (Fig. 6). This axis enters the volume V" at the point 4
such that s(4) =0 and exits it at the point B. One can then use the asymptotic expansion of

a plane wave in spherical waves [28],
exp(ikd[R]) = Z—]’; [5(5 + R})exp(—ik,R!) —8(§ - R})exp(ikiR))],
and assume that the observation point is in the far-field zone of any particle to derive [25]:
E.(r)= exp[i2m0k,“s(r)(;1(§,§))] [Eir(r). (75)
Since r =r, +s(r)s , we have
E.(r) = exp[iK(s)s(r)]E™ (r,) =78, s(r)]E™(r,), (76)
where

27,

RS) =k + <21(§,§)> (77)

1

is the dyadic propagation constant for the propagation direction § and
7i(s,s) = exp[iK (s)s] (78)

is the coherent transmission dyad. This is the general vector form of the Foldy
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POINT

Fig. 6. Scattering volume

approximation for the coherent field. Another form of Eq. (76) is

-@gQ:M@m&uy (79)

The coherent field also satisfies the vector Helmholtz equation

%K. (r) + k2E($) E.(r) =0, (80)

where E(8) =1 + 47wk <2(§,§)> is the effective dyadic dielectric constant.

These results have several important implications. First, they show that the coherent
field is a wave propagating in the direction of the incident field §. Second, since the

products <;l(§,§)> (Eire, <Z4(§,§)> q2(§,§)> [Eir, etc. always give electric vectors normal

to 8, the coherent wave is transverse: E.(r)[8 =0 . Third, Eq. (77) generalizes the optical

theorem to the case of many scatterers by expressing the dyadic propagation constant in
terms of the forward-scattering amplitude matrix averaged over the particle ensemble.

We can now make use of the transverse character of the coherent wave to rewrite the
above equations in a simpler matrix form. As usual, we characterize the propagation
direction § at the observation point r using the corresponding zenith and azimuth angles
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in the local coordinate system centered at the observation point and having the same
spatial orientation as the laboratory coordinate system {x,y,z} (Fig. 6). Then the

coherent field can be written as E.(r) = E. (r)é +E.4(r)@. Denoting, as always, the

two-component electric column-vector of the coherent field by E.(r), we have

%zik(@)&(r), @81)

where K(S) is the 2x2 matrix propagation constant with elements

ki (8) =0@) KG)BB),  kin(3) =0(5) () [H(S),

AR (82)
ka(8) = Q) E(S)B(S),  kx(8) = 9(5) (K (S) [h(s).
Obviously,
K@) = kdiagll, 1]+ 272 (S3.8)) 3)

where (S(8,8)) is the forward-scattering amplitude matrix averaged over the particle states.

It is not surprising that the propagation of the coherent field is controlled by the forward-
scattering amplitude matrix. Indeed, the fluctuating component of the total field is the sum
of the partial fields generated by different particles. Random movements of the particles
involve large phase shifts in the partial fields and cause the fluctuating field to vanish when
it is averaged over particle positions. The exact forward-scattering direction is different
because in any plane parallel to the incident wave-front, the phase of the partial wave
forward-scattered by a particle in response to the incident wave does not depend on the
particle position. Therefore, the interference of the incident wave and the forward-scattered
partial wave is always the same irrespective of the particle position, and the result of the
interference does not vanish upon averaging over all particle positions.

3.5. TRANSFER EQUATION FOR THE COHERENT FIELD

We will now switch to quantities that have the dimension of monochromatic energy flux
and can thus be measured by an optical device. We first define the coherency column vector
of the coherent field according to

EcgEt:DG
1 |& |EwEq

Jo=— |— 84

2\ W E4Ec ®4)
EyEq

and derive from Eqgs. (81) and (83) the following transfer equation:
dJ. (r R
<) = (K @) (85)

where K” is the coherency extinction matrix given by Eq. (23). The Stokes-vector
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representation of this equation is obtained using the definition . =DJ. and Eq. (25):

dl.(r) _

P (K@) (r), (86)

where K is the Stokes extinction matrix. Both J. and |, have the dimension of
monochromatic energy flux. The formal solution of Eq. (86) can be written in the form

l.(r) =H[s,s(")]l.(rs), (87)
where
HES, ) = expl =m0 (KG))s) (88)

is the coherent transmission Stokes matrix.
The interpretation of Eq. (87) is most obvious when the average extinction matrix is
given by Eq. (38):

Ic(r) = eXp[_n0<Cext>S(r)>] Ic (rA) = exp[_aexts(r)] Ic (rA) 5 (89)

which means that the Stokes parameters of the coherent wave are exponentially attenuated
as the wave travels through the discrete random medium. The attenuation rates for all four
Stokes parameters are the same, which means that the polarization state of the wave does
not change. Equation (89) is the standard Beer’s law, in which a., is the extinction

coefficient. The attenuation is a combined result of scattering of the coherent field by
particles in all directions and, possibly, absorption inside the particles and is an inalienable
property of all scattering media, even those composed of nonabsorbing particles with
(Casy =0. In general, the extinction matrix is not diagonal and can explicitly depend on

the propagation direction. This occurs, for example, when the scattering medium is
composed of non-randomly oriented nonspherical particles. Then the coherent transmission
matrix H in Eq. (87) can also have non-zero off-diagonal elements and cause a change in
the polarization state of the coherent wave as it propagates through the medium.

3.6. DYADIC CORRELATION FUNCTION

An important statistical characteristic of the multiple-scattering process is the so-called
dyadic correlation function defined as the ensemble average of the dyadic product

E(r) DES(r"). Obviously, the dyadic correlation function has the dimension of

monochromatic energy flux. Recalling the Twersky approximation (65) and Fig. 5(b), we
conclude that the dyadic correlation function can be represented diagrammatically by Fig. 7.
To classify different terms entering the expanded expression inside the angular brackets on
the right-hand side of this equation, we will use the notation illustrated in Fig. 8(a). In this
particular case, the upper and the lower scattering paths go through different particles.
However, the two paths can involve one or more common particles, as shown in panels (b)—
(d) by using the dashed connectors. Furthermore, if the number of common particles is two
or more, they can enter the upper and lower paths in the same order, as in panel (c), or in
reverse order, as in panel (d). Panel (e) is a mixed diagram in which two common particles
appear in the same order and two other common particles appear in reverse order.
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<E(r)DE|:kr')> = <(r - +Z — o« +ZZ — o0«
+ZZZ —o 0 0«
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O (r' <« + 24« + 224—0«
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+Zzzz —0—0—0 04— +---)*>

Fig. 7. The Twersky representation of the dyadic correlation function.

According to the Twersky approximation, no particle can be the origin of more than one
connector.

To simplify the problem, we will neglect all diagrams with crossing connectors and will
take into account only the diagrams with vertical or no connectors. This approximation will
allow us to sum and average large groups of diagrams independently and eventually derive
the radiative transfer equation.

We begin with diagrams that have no connectors. Since these diagrams do not involve
common particles, the ensemble averaging of the upper and lower paths can be performed

independently. Consider first the sum of the diagrams shown in Fig. 9(a), in which the X

e ee
(r—eo—e« ) (r'—e—0—0«) =
—e ® o«
@
(b) (© (d)

,
/
/
N/
N/
SN
\
\
\

|
| <
|

//’ I \\\]I . 47
(€

Fig. 8. Classification of terms entering the Twersky expansion of the dyadic
correlation function.
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indicates both the summation over all appropriate particles and the statistical averaging over
the particle states and positions. According to Subsection 3.4, summing the upper paths
yields the coherent field at r;. This result can be represented by the diagram shown in Fig.

9(b), in which the symbol 4= denotes the coherent field.

Similarly, summing the upper paths of the diagram shown in panel (c) gives the diagram
shown in panel (d). Indeed, since one particle is already reserved for the lower path, the
number of particles contributing to the upper paths in panel (c) is N —1. However, the
difference between the sum of the upper paths in panel (c¢) and the coherent field at r

vanishes as N tends to infinity. We can continue this process and conclude that the total
contribution of the diagrams with no connectors is given by the sum of the diagrams shown
in panel (e). The final result can be represented by the diagram in panel (f), which means
that the contribution of all the diagrams with no connectors to the dyadic correlation

D) X X X X X
« — 0« e e« e e e«
+ + + +
« -« « -«
(@)
<+
(b)
47
M) X X ¥ X X
-« — 0« e e« e e e«
+ + + +
— 0« — 0« — 0« — 0«
(©)
<=
(d)
—oe
<« <« <« <«
+ + + +
« — 0« — 0« — 0 0«
pX X X Y X X
(€)
<
(f)
<+

Fig. 9. Calculation of the total contribution of the diagrams with no connectors.
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(@ (b) (©

Fig. 10. Diagrams with one or more vertical connectors.

function is simply the dyadic product of the coherent fields at the points r and r':
E.(r)OE:(r).
All other diagrams contributing to the dyadic correlation function have at least one

%
<+ <+ <+
L i + i + e
< < <
@

p 9 P g X P g X X P g
o< + - 0¢+— + —O0— 0 04— + .. = —o—

(b)

<« <« <«
o+ | - | e
<« <«

z IEEDY

()

Fig. 11. Summation of the tails.
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vertical connector, as shown in Fig. 10(a). The part of the diagram on the right-hand side of
the right-most connector will be called the tail, whereas the box denotes the part of the
diagram on the left-hand side of the right-most connector. The right-most common particle
and the box form the body of the diagram.

Let us first consider the group of diagrams with the same body but with different tails,
as shown in Fig. 10(b). We can repeat the derivation of subsection 3.4 and verify that the
sum of all diagrams in Fig. 11(a) gives the diagram shown in Fig. 11(c). Indeed, let particle
q be the right-most connected particle and particle p be the right-most particle on the left-
hand side of particle ¢ in the upper scattering paths of the diagrams shown in panel (a). The
electric field created by particle ¢ at the origin of particle p is represented by the sum of the
diagrams on the left-hand side of panel (b). This result is summarized by the right-hand side
of panel (b). Analogously, the sum of the diagrams in panel (d) is given by the diagram in
panel (e), and so on. We can now sum up all diagrams in panel (f) and obtain the diagram
shown in Fig. 10(c). Thus the total contribution to the dyadic correlation function of all the
diagrams with the same body and all possible tails is equivalent to the contribution of a

S P P S
@ (b)

rp g u rp ¥ qu rpzxqu
-—o—eo— + —
rp g u
+ e = _—_@———0—
(€
P g t
=.‘=’=.‘<=
—e——b
(f)

Fig. 12. Derivation of the ladder approximation for the dyadic correlation function.
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single diagram formed by the body alone, provided that the right-most common particle is
excited by the coherent field rather than by the external incident field. Thus we can cut off
all tails and consider only truncated diagrams like those shown in Fig. 10(c).

Thus, the dyadic correlation function is equal to E.(r) JEH(r") plus the statistical

average of the sum of all connected diagrams of the type illustrated by panels (a)—(c) of Fig.
12, where the --- denotes all possible combinations of unconnected particles. Let us, for
example, consider the statistical average of the sum of all diagrams of the kind shown in
panel (c) with the same fixed shaded part. We thus must evaluate the left-hand side of the
equation shown in panel (d). Let particle  be the right-most particle on the left-hand side of
particle p in the upper scattering paths of the diagrams on the left-hand side of panel (d) and
u be the left-most particle on the right-hand side of particle ¢g. The electric field created by
particle p at the origin of particle r via all the diagrams shown on the left-hand side of panel
(d) is given by the left-hand side of the equation shown diagrammatically in panel (e) and
can be written in expanded form as

E, =G(R,)G(R,)4,(R,,,R,,)H,R,,.R,)E,
+ 2 G(Rrp )<G(sz )G(qu );lp (lirp s lipi) D;L' (ﬁpi s liiq ) qu (liiq s un )> mq

+ ¥ G(R ) G(RG(R)G(R ) A, (R, Ry D (R, Ry) T (R R )

i

qu(ﬁjqaﬁqu)> |:‘Eq +-. (90)

where E, is the field at the origin of particle g created by particle u and the summations

and integrations are performed over all appropriate unconnected particles. In the limit
N - o, Eq. (90) takes the form

E, =G(R,)G(R,)4,(R,,.R,,) 0, (R ,,,R,.)E,
+10G(R,) [ E*RG(R,NGR) A, Ry, R, ) AR, R, )) Ty (R, R, E,
+n2G(R,,) J.Vd3R,»d3R JG(R,NG(R)G(R;)A, (R, R ) Ulg(ﬁpwﬁm
ARy, R, ) O, (R, R ) By AR g R )) Ty (R R ) E
oD

The integrals on the right-hand side of Eq. (91) can be evaluated using the method of
stationary phase. The final result is [25]

“(RP‘I > RP‘I)

Pq

E, =G(R,)4,(R,,.R,,) (i, (R, R, E, (92)

pq>

where the coherent transmission dyad /7] is given by Eq. (78). Obviously, this equation

describes the coherent propagation of the wave scattered by particle g towards particle p
through the scattering medium. The presence of other particles on the line of sight
causes attenuation and, potentially, a change in polarization state of the wave.
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Fig. 13. Ladder approximation for the dyadic correlation function.

Equation (92) can be summarized by the diagram on the right-hand side of Fig.
12(e), where the double line indicates that the scalar factor exp[ikiR,,]/R,, has been

replaced by the dyadic factor exp[if(R pa MR pg ]/ R,, . Thus the total contribution of all

diagrams with three fixed common particles ¢, ¢, and p to the dyadic correlation function
can be represented by the diagram in Fig. 12(%).

It is now clear that the final expression for the dyadic correlation function can be
represented graphically by Fig. 13. Owing to their appearance, the diagrams on the right-
hand side are called ladder diagrams, and this entire formula is called the ladder
approximation for the dyadic correlation function.

3.7. INTEGRAL EQUATION FOR THE SPECIFIC COHERENCY DYAD

The coherency dyad is defined as é(r) = E(r) OE(r). The expanded form of the ladder
approximation for the coherency dyad follows from Figs. 13 and 14:

- - (o - - - OTD A
C(r)=C.(r) +ng Jd3R1d{1 At.n) 4, (r,,8) [, (R,) CH(T, 8) dz (:1 1)
i

n

e} [eR dE, [Rodd T 0 R ) R R 0, (R 9
12

1

~ A 5 TOM ~ . 5TOC
EC(RZ) D4;D(R12,§) (IZIZaRIZ) D41FFD(f'1,R12) M+ , (93)
12

n

where éc (r) =E.(r) OE(r) is the coherent part of the coherency dyad. It is convenient

to integrate over all positions of particle 1 using a local coordinate system with origin at
the observation point, integrate over all positions of particle 2 using a local coordinate

system with origin at the origin of particle 1, etc. Using the notation introduced in Fig.
14 yields

)= | dpZ(rp). ©4)

where 5 (r,—p) is the specific coherency dyad defined by
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Fig. 14. Geometry showing the quantities used in Eq. (93).

5(r,~p) =5(p +8)C.(r)
+ny [dp & 71(=B, p) Ul (=5,9) [C. (v +9) AT (-H,9) T (P, p)
+ ”g jdp dé deﬂdﬁzldfzﬁ(_f’,P) D?ll (_f’,_ﬁzl) W(_ﬁm ,Ra1)

CH, (~Ro1,8) [ (r +p + Roy) DI (—Rot 8) [ (—Rs1, Roy)

O4™(=p,~Ra) B ™(~P. p) + . (95)
Note that p ranges from zero at the observation point to the corresponding value at the
point where the straight line in the p -direction crosses the boundary of the medium

(point C in Fig. 14), R,, ranges from zero at the origin of particle 1 to the corresponding

value at point C,, etc. The specific coherency dyad has the dimension of specific
intensity (Wm sr ') rather than that of monochromatic energy flux.

It is straightforward to verify that 5 satisfies the following integral equation:
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Fig. 15. Geometry showing the quantities used in the derivation of the RTE.

(9) =3 +8)Co(r) +ny [dp dE dp'77(-p, p) Ui, E(r +p,~')
CH™(=p.~p) B ™(=. p) (96)

Indeed, Eq. (95) is reproduced by iterating Eq. (96). Equation (95) is simply an order-of-
scattering expansion of the specific coherency dyad with coherent field serving as the
source of multiple scattering.

The interpretation of Eq. (96) is clear: the specific coherency dyad for a direction
—p at a point r consists of a coherent part and an incoherent part. The latter is a

cumulative contribution of all particles located along the straight line in the p -direction

and scattering radiation coming from all directions —p' into the direction —p .

3.8 RTE FOR SPECIFIC COHERENCY DYAD

We now introduce a g-axis as shown in Fig. 15 and rewrite Eq. (96) as

£0.0)=3@-9C.0) +n, [ dg [a¢ [ 04'7(6,0-4)Ti(@,0)
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[5(g,4") A™q.9") F™(q,0 - 9) - (97)

Defining the diffuse specific coherency dyad as 5,4(0,q) = 2(0,q) —8(4—$)C.(0), we
obtain

£,0.0)=m [ dg [a€7i@,0-9) i@ HC.q) (@9 @, 0-9)

0 AL oA A Ay — AT
- j dg jde”dq (6.0 - ) 01(4,8) B4 (4,6

(H'(q,4) F™(q,0-q) - (98)
Differentiating both sides of Eq. (98) yields
d500,q) . on == .
% = iR () F4(0.0) - i5:(0,§) F™ @)

+o [d€ [ d§(6.6) £0(0.4) D@0
+ny [d€4(.8) IE.(0) DI™@.9) (99)

For further use, it is more convenient to rewrite Eq. (99) in the following form:
A, rQ) o= = .
D = k(@) B @) - i (D FT @)

+o [d€ [ 44'4(@.4) Fa(r.§) DI™@.G)

+ny [4€4@9) €. DIT@.9) (100)

where dg is measured along the unit vector q. Equation (100) is the integro-differential
RTE for the diffuse specific coherency dyad.

3.9. RTE FOR SPECIFIC INTENSITY VECTOR

It follows from Eq. (98) that § (Z,(r,q) = 24(r,q) [§ =0, which allows us to introduce

the 2x2 diffuse specific coherency matrix py using the local coordinate system with

origin at the observation point and orientation identical to that of the laboratory
coordinate system:

=18 @) D@ @) (r.a) H(@) 101
Pa(r,q) N S O (101)
2\ Ho | 9@ Za(r,q) (@) ¢(q)Za(r,q) [H(q)

We can now rewrite Eq. (100) in the form of the RTE for the diffuse specific coherency

matrix:
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dPu(r,Q) _.p ais o An o Ay e
SPuD) = @B )~ iB . K™ @

+mo [d€ [ d4'S(@.49Pa(r.4)S™@.0)

+ny [4€8(4.9P.(DS™(@.9), (102)

where S is the amplitude matrix, k is the matrix propagation constant given by Eq. (82),
and

or)= L \/Z P(ﬁ)@r)t@(s}) 06) L. HE) | (103)
2Vt [$® EBE) 66) (1) HE)

The next obvious step is to introduce the corresponding coherency column vectors jd
and J. :

Edll El’a (:l; Pell Er;

3 Ay | Panz(l,q —| Per2 (I

W= s wal O am | (109
pan (r,q) P (T)

Lengthy, but simple algebraic manipulations yield

djd (r: (i) -

PRSI CURMCTIGY [ da(z’ @a)dar.d)

*+10(Z7(§,8))Je(r), (105)

where <KJ ((i)> is the coherency extinction matrix averaged over the particle states and

<ZJ ((j,(i')> is the ensemble average of the coherency phase matrix. The column vector
J.(r) satisfies the transfer equation (85).

The final step in the derivation of the RTE is to define the diffuse specific intensity
column vector, Td (r,q) = Djd (r,q), and the coherent Stokes column vector,
l.(r) =DJ.(r), and rewrite Eq. (105) in the form

de (l', (i) -

" o (K(@)) T (r,§) + g j 4G(Z(@.4))1a(r.§) +n(Z@H(r). (106)

where <K(d)> is the ensemble average of the Stokes extinction matrix and <Z((i,ﬁ')> is the

ensemble average of the Stokes phase matrix. The coherent Stokes column vector I.(r)
satisfies the transfer equation (86).
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3.10. DISCUSSION

Equations (86) and (106) represent the classical form of the RTE applicable to arbitrarily
shaped and arbitrarily oriented particles. The microphysical derivation of these equations
outlined above is based on fundamental principles of statistical electromagnetics and
naturally replaces the original incident field as the source of multiple scattering by the
decaying coherent field and leads to the introduction of the diffuse specific intensity
vector describing the photometric and polarimetric characteristics of the multiply

scattered light. The physical interpretation of Td (r,q) is rather transparent. Imagine a

collimated detector centered at the observation point and aligned along the direction
q (#5) (Fig. 16). Let AS be the detector area and AQ its acceptance solid angle. Each

infinitesimal element of the detector surface responds to the radiant energy coming from
the directions confined to a narrow cone with the small solid-angle aperture AQ
centered around q . On the other hand, we can use Eq. (98) to write

~ R 1 n
AQ ly(r,q) = noj d3p—2H(q,P)
AV p

(2@ [ d@@OLEpD). (10

where p originates at the observation point r (Fig. 15) and the integration is performed

Fig. 16. Physical meaning of the diffuse specific intensity vector.
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over the conical volume element AJ having the solid-angle aperture AQ and
extending from the observation point to point C (Fig. 16). The right-hand side of Eq.
(107) is simply the integral of the scattering signal per unit surface area perpendicular to
q per unit time over all particles contained in the conical volume element. It is now

clear what quantity describes the total polarized signal measured by the detector per unit
time: it is the product ASAQ Td (r,q), which has the dimension of power (W). The first

element of Td (r,q) is the standard diffuse specific intensity Iq (r,q) defined such that
the product AtTASAQ 7 4(r,q) gives the amount of radiant energy transported in a time

interval Az through an element of surface area AS normal to q in directions confined
to a solid angle element AQ centered around q. The fact that the diffuse specific

intensity vector can be measured by an optical device and computed theoretically by
solving the RTE explains the practical usefulness of this quantity.

The microphysical derivation of the RTE was based on the following fundamental
approximations:

*  We assumed that each particle is located in the far-field zones of all other particles and
that the observation point is also located in the far-field zones of all the particles
forming the scattering medium.

*  We neglected all scattering paths going through a particle two and more times (the
Twersky approximation).

*  We assumed that the position and state of each particle are statistically independent of
each other and of those of all other particles and that the spatial distribution of the
particles throughout the medium is random and statistically uniform.

*  We assumed that the scattering medium is convex, which assured that a wave exiting
the medium cannot re-enter it.

e We assumed that the number of particles N forming the scattering medium is large.

*  We ignored all diagrams with crossing connectors in the diagrammatic expansion of
the dyadic correlation function (the ladder approximation).

As a consequence, the RTE does not describe interference effects such as coherent
backscattering. The latter is caused by constructive interference of pairs of conjugate
waves propagating along the same scattering paths but in opposite directions and is
represented by diagrams with crossing connectors excluded from the derivation [21, 23].
Particles that are randomly positioned and are separated widely enough that each of
them is located in the far-field zones of all other particles are traditionally called
independent scatterers [26]. Thus the requirement of independent scattering is a
necessary condition of validity of the radiative transfer theory.

A fundamental property of the RTE is that it satisfies the energy conservation law.
Indeed, we can rewrite Egs. (86) and (106) as a single RTE:

G0 (r,q) =004 1(r,4)] = —no (K@) 1 (r, @) +n, j 4q'(2(4.4)) 1.4 (108)
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where T(r,(i) =8(ﬁ—§)|c(r)+Td (r,q) is the full specific intensity vector. The flux
density vector is defined as F(r)= J dq 4/ (r,q) . The product pF(r)dS gives the
4

amount and the direction of the net flow of power through a surface element dS normal
to p. Integrating both sides of Eq. (108) over all directions q and recalling the

definitions of the extinction, scattering, and absorption cross sections (Subsection 2.5),
we derive

~OF(r) = ny j d4(Can (@)1 (r,9) (109)

This means that the net inflow of electromagnetic power per unit volume is equal to the
total power absorbed per unit volume. If the particles forming the scattering medium are
nonabsorbing so that (C,(q)) =0, then the flux density vector is divergence-free:

UF(@)=0.
For macroscopically isotropic and mirror-symmetric media, Eq. (108) can be
significantly simplified (see Subsection 2.7):

NEID ~ Tir6,9)+Z [acose) [(19'26.0.9-9)T w64, (10)
dr 47T I 0

where d7 =n,(C.)dg is the optical pathlength element. By writing the normalized phase

matrix in the form 2(9, .9 —-¢'), we explicitly indicate that it depends on the difference

of the azimuth angles of the scattering and incident directions rather than on their specific
values. Equation (110) can be made even simpler by neglecting polarization and replacing
the specific intensity vector by its first element (i.e., specific intensity), and the normalized
phase matrix by its (1, 1) element (i.e., the phase function):

Y09 - _Tr0.9)+ 7 [acost) ["ag' @ Tw0.9). (1))
dr(r) 47T J1 0

where @ is the scattering angle (Fig. 3). Although ignoring the vector nature of light
and replacing the exact vector radiative transfer equation by its approximate scalar
counterpart has no rigorous physical justification, this simplification is widely used
when the medium is illuminated by unpolarized light and only the intensity of multiply
scattered light is required. The scalar approximation gives poor accuracy when the size
of the scattering particles is much smaller than the wavelength [29], but provides
acceptable results for particles comparable to and larger than the wavelength [30].

4. Adding equations

In order to apply the RTT to analyses of laboratory measurements or remote sensing
observations, one needs efficient theoretical techniques for solving the RTE.
Unfortunately, like many integro-differential equations, the RTE is difficult to study
mathematically and numerically. In order to facilitate the analysis, we will need several
simplifying assumptions. The most important of them are that the scattering medium (1)
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/O
X
Fig. 17. Plane-parallel scattering medium illuminated by a parallel quasi-
monochromatic beam of light.

is plane parallel, (ii) has an infinite horizontal extent, and (iii) is illuminated from above
by a parallel quasi-monochromatic beam of light. These assumptions mean that all
properties of the medium and of the radiation field may vary only in the vertical
direction and are independent of the horizontal coordinates. Taken together, these
assumptions specify the so-called standard problem of atmospheric optics and provide a
model relevant to a great variety of applications in diverse fields of science and
technology. In this section we will not make any further assumptions and will derive
several important equations describing the internal diffuse radiation field as well as the
diffuse radiation exiting the medium.

4.1. THE STANDARD PROBLEM

Let us consider a plane-parallel layer extending in the vertical direction from z =z, to
z=z,, where the z-axis of the laboratory coordinate system is perpendicular to the
boundaries of the medium and is directed upwards, and “b” and “t” stand for “bottom”
and “top,” respectively (Fig. 17). A propagation direction n at a point in space will be
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specified by a couplet {u, ¢}, where u =—cos@U[—1, +1] is the direction cosine, and &
and ¢ are the corresponding polar and azimuth angles with respect to the local
coordinate system having the same spatial orientation as the laboratory coordinate
system. It is also convenient to introduce a non-negative quantity = |u| [J[0,1]. In order
to make many formulas of this section more compact, we will denote by f the pair of
arguments (U, @) and by —f the pair of arguments (-, @) (note that 4 and —fI are
not unit vectors). A [ always corresponds to a downward direction and a —f1 always
corresponds to an upward direction. We also denote

Id,[l = Edu f”dqﬁ . (112)

Let us assume that the scattering layer is illuminated from above by a parallel quasi-
monochromatic beam of light propagating in the direction n, = {4, @y} . The uniformity
and the infinite transverse extent of the beam ensure that all parameters of the internal

radiation field and those of the radiation leaving the scattering layer are independent of the
coordinates x and y. Therefore, Eq. (108) can be rewritten in the form

—u% = —no(2)K(z, 1) 1 (2, A) +1o(z2) I di' Z(z, 0,0 1(z, ") (113)
4
and must be supplemented by the boundary conditions
1z, 1) = 8(1 = 110)5(8 = o)l . (114)
1(zo,- ) =0, (115)

where T(z, n) =3(n-ny)l.(z)+ 14 (z,n) is the full specific intensity vector including both
the coherent and the diffuse component, K and Z are the ensemble-averaged extinction and
phase matrices, respectively (note that we have omitted the angular brackets for the sake of
brevity), |, is the Stokes vector of the incident beam, and 0 is a zero four-element column.
The boundary conditions follow directly from the integral form of the RTE and mean that
the downwelling radiation at the upper boundary of the layer consists only of the incident
parallel beam and that there is no upwelling radiation at the lower boundary. Equations
(113)(115) collectively represent what we have called the standard problem.

Since ny(z) is a common factor in both terms on the right-hand side of Eq. (113), it is

convenient to eliminate it by introducing a new vertical “coordinate” (/(z) according to
dy =—ny(z)dz or

Y(z)= f “no(2)dz' (116)

The ((z) has the dimension m™ and is the number of particles in a vertical column

having a unit cross section and extending from z' =z to infinity. It is, therefore, natural to
call it the “particle depth.” Unlike the z-coordinate, which increases in the upward direction,
the ¢/ -coordinate increases in the downward direction. We then have
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Fig. 18. The standard problem.
u‘ﬁé—‘z/’ﬁ) =—K@,n) (@, h) + L AR’ Z(@. i, M1, n), (117)
1(0, 2) = (1 = 16)3(¢ = P o, (118)
W, -=0, (119)

where ¥ =((z,) is the “particle thickness” of the layer (Fig. 18).

4.2. THE MATRIZANT

Consider first the solution of the differential transfer equation

dlw, i s
u# =K@, DIW. 0, W2, (120)
supplemented by the initial condition
TWo, £)=T,. (121)

It is convenient to express T(t,ll, [) in terms of the solution of the following auxiliary
initial-value problem:
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dX 0, [ R .
u%") =KW, DXW. Yo, ), W2, (122)
XWo, o, =4, (123)

where X, ,, [1) is a 4x4 real matrix called the matrizant and A =diag[1,1,1,1] is the

4x4 unit matrix. Specifically, if the matrizant is known then the solution of Egs. (120)—
(121) is simply

TW. ) =X@. g0, D). (124)
The matrizant has the obvious property
XW. o, 1) =X, 1, X, o, 1), (125)

where (, <Y, <Y .
If the scattering layer is homogeneous then K(, f1) =K(f) , and the matrizant can be

written in the form of a matrix exponent:

XW. o, £ =exp[- @ ~¢o) K()/ 1] (126)
If the layer is inhomogeneous, one should exploit the property (125) by subdividing the
interval [{,,{/] into a number N of equal subintervals [, 4], ..., [W.-1,W.], ...,

[(/x-i, ] and calculating the matrizant in the limit N — co:
X@. o ) = lim {[A =A@/ ) K@y + 8 /2, ()] -
x[A- A/ K@, +Ap/2, )]
x[A=(Aw/w KW, +Ay/2, 1]}, (127)
where AY = (@ ~y)/N .

Similarly, the solution of the equation

dl, - o~ A
—#%*K(w,—ﬂ)l(w,—ﬂ), w<w, (128)
supplemented by the initial condition
TWo, - =1, (129)

can be expressed in terms of the solution of the auxiliary initial-value problem

L AXW o~ 1) _
T

X(W@o, o, — 1) =A (131)

KW, - XW. @0, ),  Y<si,, (130)

as



404

W, - ) =XW. o, - ), . (132)
The matrizant X(/, Yo, — 1) has the property

XW. o = ) = X@W. .~ DXWr. 0o~ ), @< <ty (133)
and is given by

X, @0, — 1) = exp| - @0 - ) K(-20)/ 1] (134)

if the layer is homogeneous and by
X@. o, - ) = lim {[A - (A¢/ ) KWx-1 - Ay/2, - )]~
x[A =A@/ 1) KW, —Aw/2,- )]+
x[A-Ag/ Ky, -Ap/2.- )]} (135)
if the layer is inhomogeneous, where Ay = (W, —()/N and @, =W, —nAy .

4.3. THE GENERAL PROBLEM

The standard problem (117)—(119) implies that the scattering layer is illuminated only from
above and only by a parallel beam of light. It is useful, however, to consider mathematically
the following more general boundary values, which include the boundary conditions (118)
and (119) as a particular case:

10, =1,(), (136)
TW.-y=1,(-f), (137)

where Ti (f1) and TT (=f1) are arbitrary. We will call Egs. (117), (136), and (137) the
general problem.
The linearity of the RTE allows us to express the radiation field T(z,t/, n) for ¢ [0, ¥]

in terms of the specific intensity vectors 1 ,(f1) and TT (=f1) as follows:

T@. 2 =X@0. W1, (D +% [af'u D@, . fOT, (&)

+4 fagu . i 0T, i), (138)
1@ =) =X@ ¥ =T, (<) + 5 [df i U@ i O, (i)
+4 [aiw D' @ DT, R (139)

where the 4x4 matrices D and U describe the response of the scattering layer to the
radiation incident on the upper boundary from above, while the 4x4 matrices D' and U*
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Fig. 19. Illustration of the adding principle.

describe the response to the radiation illuminating the bottom boundary of the layer from
below. The first terms on the right-hand side of Eqs. (138) and (139) describe the coherent
propagation of the incident light, whereas the remaining terms describe the result of
multiple scattering. The corresponding reflection and transmission matrices determine the
Stokes parameters of the radiation exiting the layer and are defined as

R(4, @) =U(0, o, i), (140)
T(a, 1)=DW, i, i1'), (141)
RY (4, (1) =U'W, i, i), (142)
T4, @)=D"(0, i1, i) (143)

The matrices R and T describe the response of the layer to the external radiation falling
from above, whereas the matrices R" and T' describe the response to the external

radiation falling from below.
The reader can easily verify that the solution of the standard problem can now be

expressed as

T(l//, ) = 3( = 4o)S(P — B0 )XW 0, L1yl +L,T,UOD(¢’5 £, o)l (144)
T, - =L 0w, i1, fi)lo, (145)
T, ) = 8(k = 110)3(8 = X0, 2o)lo +L 1 T(L2, oo (146)
100, = f1) = L uoR(1, 1)y - (147)

4.4. ADDING EQUATIONS

In this subsection we will describe an elegant mathematical scheme for computing the
matrices D, U, D7, U", R, T, R, and T' based on so-called adding equations. Let us
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divide the entire layer [0,%] into layers [0,¢/] and [¢,%¥] (Fig. 19). Applying Egs.
(138)—(143) to the two component layers and to the combined layer yields

U, i1, (1) =Ry (1, X0, )+ J.d,[z",u" R (4, DWW, (1", [1) (148)
D, 1, 1) = Ti(f, )+ Idﬂ"#" RI(&L AW, 2", (1), (149)
U, a, @) =RI(a, AOX@ ¥~ 1)+ _[dﬂ",u" RI(4, 2D (. 2", 1), (150)
DY (. 1 ) = T (. )+ % [drus R, (fr, W' @, 2, ), (151)
where the subscripts 1 and 2 denote the reflection and transmission matrices of isolated

layers 1 and 2, respectively. Indeed, we can apply Egs. (138), (141), and (142) to layer 1
and write

T, ) =X@ 0, T, (@ +% [au T (it (T, (1)
+4 [ Rl 1T, =)
= X@ 0. AT, () +4 [dfu Tt DT, (@)
v faiu RI (i O X@ ¥~ O, (=1) +% [afrpr U, 1, @O, ()
w4 [aprur D@, 0, 10T, ). (152)

which, after comparison with Eq. (138), gives Eqgs. (149) and (150). Similarly, Egs. (148)
and (151) follow from

T~ =X ¥ =V, )+ |l T O, (=)

o
AL A A

4 JAE R (B, AT, /)
=X ¥ =V, (<) + [AiH T EOT, ()

i Ry (8, [ X0, 20T, (2 +4% [ait'w D@, 4, T, (1)

w1 faip U@, @ 00T, (1) (153)

and Eq. (139). By analogy, one can derive
R(:[l> ﬂ') = Rl (/:15 ﬂ’) + X(O’l//) - ﬂ)U(l//, [17 /:1’)

+4 QA T AW ) (154)
T(AL ) =T, (f K@, 1) + X(Wp foD . f1 A

+4 QA" T, (o AOD@. ). (155)
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Layer 2

RY(f1, i) =Ry (a4, 2) + X V' (W, 1, (1)

Py Ay

L w2 20, (156)
TH A =T AOX@ W= )+ X (0.4 = Q0D @ 1)

A Ay

+ I da"u" T (4, /DT, 2", {1 . (157)

The interpretation of Egs. (148)—(151) and (154)—(157) is clear. For example, Eq. (148)
indicates that the upwelling radiation at the interface between layers 1 and 2 in response to
the beam incident on the combined layer from above is simply the result of the reflection of
the corresponding downwelling radiation by layer 2. This downwelling radiation consists of
the attenuated direct component represented by the matrizant X (¢, 0, 4') (photon trajectory

1 in Fig. 20) and the diffuse component represented by the matrix D(y, 4", ') (photon

trajectory 2 in Fig. 20). Similarly, Eq. (154) shows that the reflected radiation in response to
the beam illuminating the combined layer from above consists of three components: (i) the
photons that never reached the interface between layers 1 and 2 (the first term on the right-
hand side of Eq. (154) and photon trajectory 1 in Fig. 21); (i1) the photons reflected by layer
2 and transmitted by layer 1 without scattering (the second term on the right-hand side of
Eq. (154) and photon trajectory 2 in Fig. 21); and (iii) the photons reflected by layer 2 and
diffusely transmitted by layer 1 (the third term on the right-hand side of Eq. (154) and
photon trajectory 3 in Fig. 21). The reader may find it a useful exercise to give similar
graphical interpretations of Egs. (149)-(151) and (155)—(157).

Equations (148)—(151) and (154)—(157) are called adding equations because they allow
one to compute the scattering properties of the combined layer provided that the scattering

properties of each component layer are known. Indeed, if the matrices R;, T,, R}, and

T/ for layer 1 in isolation from layer 2 and the matrices R,, T,, R}, and T} for layer 2
in isolation from layer 1 are known then one can solve Egs. (148)—(151) and find the
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Fig. 21. Physical interpretation of Eq. (154).

matrices D, U, D', and U describing the radiation field at the interface between the layers

in the combined slab. This procedure involves replacing the angular integrals by appropriate
quadrature sums. For example, Eq. (148) becomes

UW; i, @55 1> $1) =Ro (i, @55 i, 8OXW, 0; pa, 1)
1 Ny Ng
+;ZZ wnzunﬂmRZ(ﬂi>¢j;ﬂnza ¢n) D(t//;/um7¢n;,uk7¢/)a

m=1 n=1

where 4, and w; (i=1,...,N,) are quadrature division points and weights on the interval
[0, 1] and ¢; and u; (i=1,...,N,) are quadrature division points and weights on the
interval [0, 271]. The resulting system of linear algebraic equations for the unknown values

of the matrices D,U, D', and U" at the quadrature division points can be solved using one

of many available numerical techniques. After the matrices D, U, D, and U" at the

quadrature division points are found, the reflection and transmission matrices of the
combined layer can be calculated using the discretized version of Egs. (154)—(157). Adding
two identical layers is traditionally called the doubling procedure.

Furthermore, let us assume that the matrices U,, D, , Ul , and D] for a vertical level

inside layer 1 are known, where the subscript 1 indicates that these matrices pertain to layer
1 taken in isolation from layer 2. Then the matrices U, D, U, and D' for the same level

in the combined layer can also be easily calculated. Indeed, applying Egs. (138) and (139)
to each component layer and to the combined layer, we derive

U(l//'7 laa /T) = Ul (l//’a laa /:l’) + X(‘//;‘//, - ﬂ)U(‘//a ﬂa /T)
+ [dirw Dl @' f VW, 1 1) (158)
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Fig. 22. Internal radiation field.

D', i f) =Dy, f, ) +% [ @, 1 OO, 7, 1) (159)
U@ . ) =Vl X - )

w4 [diru Ol W, 1D @ 1 1), (160)
D', 1 ) =Dl W', 1 EOXW ¥~ ) +XW. ¢4 — 0D @, f1, /1)

+ [diu L@, f, 2D @, 17 ) (161)

for ' 0[0,] (Fig. 22(a)). Similarly, if we know the matrices U, , D,, U}, and D} for a

vertical level inside layer 2 taken in isolation from layer 1 then

U(l//'7 [l, :[l,) = Uz(l//' _w’ ,[1, /),)X(l//r Or ﬂ')

o Al w0 @ -, D@L B 1), (162)
D' 21 2) =Da (' ~ 4. . LOXW0, ) +X@\ s ODW. 1. 1)
+4 [a@w D, @' -y i ODWL A 1), (163)
U@ 1 ) =L@~ 1 1)+ X VT @, 1, 1)
o (A D, @ g i O @ R (164)

D' (', 1 A =DLW ~ g 1)+ [ U@ = 1 O @ B )
(165)

for ¢' Oy, %] (Fig. 22(b)). The physical meaning of these formulas is rather transparent.



410

Layerl

Layer 2

Fig. 23. Physical interpretation of Eq. (158).

For example, the first term on the right-hand side of Eq. (158) represents the contribution of
photons that never reached the interface between layers 1 and 2, as shown schematically by
photon trajectory 1 in Fig. 23. The second term describes the contribution of the photons
that crossed the interface, exited layer 2 in the direction £, and reached the level ¢

without scattering, as illustrated by photon trajectory 2 in Fig. 23. The last term gives the
contribution of the photons that crossed the interface and were scattered at least once inside
layer 1 before they reached the level (' (trajectory 3 in Fig. 23).

A practical implementation of the adding method can involve the following basic steps.

(1) A vertically inhomogeneous layer of particle thickness ¥ 1is approximated by a
stack of N partial homogeneous layers having particle thicknesses ¥/, ...,%y such that

w :ZN_I‘,U” (Fig. 24). The number of partial layers and their partial thicknesses can

depend on the degree of vertical inhomogeneity of the original layer as well as on the
desired numerical accuracy of computations.

(2) The reflection and transmission matrices R,,T,,R}, and T,/ of partial layer n in
isolation from all other layers are computed by using the doubling method (Fig. 25). The
doubling process can be started with a layer having a particle thickness AW, =4, /2%
small enough that the reflection and transmission matrices for this layer can be computed by
considering only the first order of scattering. Specifically, choosing the number of doubling
events k, sufficiently large that all elements of the matrices A¥,Z, and A¥Y,K, are

much smaller than unity, using Eqs. (117) and (136)—(143), and neglecting all terms
proportional to (AW¥,)" with m > 1, we derive
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Fig. 24. Representation of a vertically inhomogeneous scattering layer by a stack
of N homogeneous sublayers.

X,(AW,,0, 2= A —AT‘f"Kn(ﬂ'), (166)

TAY,
{

}oaw,
!

}4AQU”
}
!

w=2kAW

Fig. 25. The doubling procedure.
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X,(0,A%,,~ Q) =A- AZ’" K, (-A0). (167)
PO | nAqJn o |
R, (2. )=—"Z,(-. 1), (168)
jn
o AW,
T, (4, 0)=—"Z,(, 1), (169)
j
Ny TAY, . ~
RI(i, f)y=——"Z,(f1,—- i), (170)
j
e TAW, L
T(of)y=—7Z,(-4,- 1), (171)
j

Obviously, the doubling procedure will also yield the matrices U, , D,, U}, and D} at

2% —1 equidistant levels inside the nth partial layer (Fig. 25).

(3) The N partial homogeneous layers are recursively added starting from layer 1 and
moving down or starting from layer N and moving up. This process gives the reflection and
transmission matrices of the combined slab and the matrices U, D, U™, and D' at the

N -1 interfaces between the partial layers as well as at the ZN_I (2k =1) levels inside the

partial layers rendered by the doubling procedure.

Numerical solution of the adding equations requires the knowledge of the ensemble-
averaged extinction and phase matrices. The exact and approximate theoretical methods
applicable to single-scattering computations for small particles have been extensively
reviewed in recent books by Mishchenko er al. [26, 31] and will not be specifically
discussed here. Those books also provide a detailed discussion of extinction, scattering, and
absorption properties of particles having diverse morphologies and compositions and
encountered in various environments.

The adding concept goes back to Stokes [32], who analyzed the reflection and
transmission of light by a stack of glass plates, and was introduced to radiative transfer by
van de Hulst [33]. Our derivation of the adding equations for scattering layers consisting of
arbitrarily oriented nonspherical particles largely follows [34].

The adding equations become significantly simpler for macroscopically isotropic and
mirror-symmetric scattering media (cf. Eq. (110)). A definitive account of this situation can
be found in [35, 36]. Multiple remote sensing and astrophysical applications of the RTT can
be found in [6-11, 13, 15, 31, 37-40].
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